
PHYSICAL REVIEW E, VOLUME 64, 016130
Dynamical quenching and annealing in self-organization multiagent models
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We study the dynamics of a generalized minority game~GMG! and of the bar attendance model~BAM ! in
which a number of agents self-organize to match an attendance that is fixed externally as a control parameter.
We compare the usual dynamics used for the minority game with one for the BAM that makes a better use of
the available information. We study the asymptotic states reached in both frameworks. We show that states that
can be assimilated to either thermodynamic equilibrium or quenched configurations can appear in both models,
but with different settings. We discuss the relevance of the parameterG that measures the value of the prize for
winning in units of the fine for losing. We also provide an annealing protocol by which the quenched con-
figurations of the GMG can progressively be modified to reach an asymptotic equilibrium state that coincides
with the one obtained with the BAM.
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I. INTRODUCTION

In recent times considerable attention has been give
the description of self-organization processes in multiag
models. These are geared to explain how~and which! indi-
vidual decisions give rise to cooperative effects that show
in the behavior of the system as a whole. Such models h
a wide number of interesting applications in a variety
situations that range from routing of messages in an in
mation network to the way in which equilibrium is~dynami-
cally! achieved by an ensemble of economic agents.

The main question posed in this line of analysis is how
system composed of multiple agents acting in a decentral
fashion is able to reach a state of ‘‘macroscopic order’’
which individual decisions appear to be coordinated with o
another. A well known example of this line of research is t
bar attendance model~BAM ! proposed by Arthur in Ref.@1#.
This model was developed to illustrate a case of coordina
through a process that can be considered as inductive le
ing.

In the BAM a ~large! number of individuals have to de
cide whether or not to go to a bar at a certain date. T
share the common perception that attendance is not desi
when the number of people who are present exceeds a
cal value, which is smaller than the total population of c
ents. Otherwise they derive utility from going to the bar.

A dynamics is proposed by which each agent individua
updates her criteria to decide on attendance. These are b
upon public information, which concerns the total attenda
in previous days. Agents use inductive reasoning to pre
the number of customers on the following day.

It is simple to realize that the model is self-deceiving:
everybody decides to attend, crowding is produced and
erybody loses. Everybody will then refrain from going th
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next day, a situation in which, again, everybody loses
cause many could go without crowding. In an iterated v
sion of the model agents plan their attendance for the n
few days. In this case it is more evident that the only sta
solution is a situation in which a diversity of individual stra
egies compensate each other, saturating the capacity o
bar every day. The system self-organizes in a~dynamic!
Nash equilibrium in which every agent optimizes their r
spective situation given what has been done by the rest o
players. In this case any player who changes her rules
laterally ends up losing. Such equilibrium is also Pareto
timal because no agent can improve her situation with
harming that of some other player. If adaptation is stochas
the attendance equilibrates at the accepted value with
dom fluctuations.

An alternative version of the BAM called the minorit
game~MG! has recently received much attention@2–6#. The
main feature of this framework is that agents derive util
whenever their choice coincides with that of the minori
Self-deception is also evident within this framework. T
MG has been presented as a simplified version of the BA
In the present paper we concentrate on the approach in
duced in Ref.@6#, making a detailed comparison of the M
and the BAM. Johnsonet al.’s original model uses the re
sults of several previous rounds of the game~i.e. it has some
kind of memory!. In earlier work@7#, and following the ideas
of Cavagna and co-workers@5#, we proved that a ‘‘simpli-
fied’’ version of the model,that makes no use of memory, is
indistinguishable from the original formulation. In this wor
we follow the same approach for both the MG and the BA
We are aware that this point is still controversial in relati
to the alternative formulation of Refs.@3,4#. We will see that
the MG, besides being a particular case of the BAM~namely,
one in which the optimal attendance has been fixed at
the total number of customers!, makes a different use of th
same information@8#.

The treatments of the BAM have traditionally@1,9# been
based upon genetic algorithms@10#. Each agent is assume
to keep a set of strings that encode her possible attend
©2001 The American Physical Society30-1
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schedules for the following days. After that period ea
agent computes the outcome of all her possible plans
chooses the best to use during the next period. The a
dance schedules are considered as the ‘‘genomes’’ of a
netic algorithm and are updated by selection, random m
tions, and crossover. The BAM can be regarded as
iterated version of the MG, i.e., one in which players have
make their choices for several rounds of the same ga
There is, however, one important difference. The BAM
volves only ~the iteration of! pure strategies where playe
either go or do not go to the bar. The players in the MG ha
insteadmixedstrategies, i.e., they make their choice of goi
or not goingwith a given probability. The iterated pure strat
egies in the BAM undergo an adaptive process. Within
MG mixed strategies also change. Each agent randomly
tends the bar~with a given probability! and collects points or
pays fines depending on whether the attendance is belo
above the acceptable level. The mixed strategy~i.e., her at-
tendance probability! is changed when her account falls b
low a given threshold. Both the BAM and the probabilis
approach of Ref.@6# can be regarded as mean field descr
tions because only the aggregate effect of the whole
semble of agents is relevant for both adaptive processes
the other hand, the mixed strategy played by the agents in
MG can be assimilated to a time averaged version of
iterated attendance schedules of the players in the BAM

In order to render possible a comparison between the
and the BAM two elements have to be considered. On
one hand a generalized version of the MG~the GMG! has to
be developed to describe situations traditionally conside
within the BAM, namely, cases in which the winning choi
is to meet the one taken by anarbitrary fraction of the popu-
lation, not just the minority. There are no systematic stud
of this GMG. On the other hand a probabilistic~mixed strat-
egy! mean field approach of the BAM has to be develop
There are a number of possibilities for defining the mix
strategies for these two models. In the present paper we
sider for the GMG an obvious extension of the adaptive
dating dynamics that reproduces the well known se
organizing features of the MG. For the BAM we propo
instead a mixed strategy that reproduces the results obta
with the usual treatments of this model that use iterated, p
strategies. It turns out that the two dynamics are differen
happens that the one associated with the BAM makes a
ter use of the available information than in the GMG. A
though in both frameworks—GMG and BAM—all agen
have access to thesame information, with the proposed
BAM rules they are able to keep better track of the causes
winning or losing, thus making a more effective use of
than in the GMG. These seemingly minor changes prod
widely different cooperative behaviors. The GMG leads
general to quenched states that are far from equilibrium.
BAM evolution leads instead to an asymptotic configurat
that can be thought of as a thermodynamic equilibrium
has lost memory of the initial conditions, the individual stra
egies continue to be updated at all times, and yet the den
distribution of attendance strategies remains stationary
the following sections we discuss how both models yi
similar results in a rather reduced portion of the space
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parameters but turn out to be very different in all the rest. W
show that an essential parameter that governs the
organized configuration of the system is determined by
rewards and punishments that are contained in the scorin
successes and failures of the agents. The control parame
the valueG of the prize for winning relative to the fine fo
losing. Ordinarily the effect of this parameter has been d
regarded and the only case studied in the literature isG51.
Quenching and equilibrium regions change significantly
GÞ1.

In the next section we describe and characterize
quenched state in the GMG and discuss the phase diag
that is found ifG is left as a free parameter. In Sec. III w
compare this to the BAM. In Sec. IV we provide an analy
cal discussion to support the results presented in the prev
sections. In Sec. V we present an annealing protocol
makes use of the fact that quenching is a consequence o
memory stored in the system encoded by the points ga
by the agents. The protocol allows the system to reach e
librium using the MG dynamics by progressively modifyin
the quenched state, removing the memory stored in the
tem.

II. THE GMG MODEL

We consider anN-agent system in which each has
mixed attendance strategy expressed by a probabilitypi ( i
51,2, . . . ,N) of going to the bar. We taken to be the ac-
ceptable level of attendance without crowding. The presc
tion to adapt the individual strategies is the following. If th
attendanceA turns out to beA<n, and the agent chooses t
go to the bar, she gainsG points. Otherwise, she pays a fin
of 1 point. The valueG is left as a free parameter.

The balance of gains and losses keeps a record of
cesses and failures of each agent. If the latter are more
quent than the former, her account ends up by falling be
some fixed threshold~which we take to be 0!. In this case her
account is reset to zero and her strategypi is updated. This is
done by changing the value ofpi to one chosen at random
within the interval (pi2dp,pi1dp). The width of this inter-
val ~we takedp50.05) is left unchanged during the who
process. Reflective boundary conditions forpi are used
whenever necessary.

All N agents have initially 0 points and their initial atte
dance strategies are chosen with some criterion. In
present section we restrict ourselves to considering the
in which all p’s are initially chosen at random from the in
terval @0,1# with uniform probability.

The state of the many agent system is well described
the density distributionP(p) which gives the fraction of
agents that have a strategy within the interval (p,p1dp). In
order to calculate this we generate an ensemble ofH histories
of the N-agent system by evolving it during a fixed numb
of iterations and starting from statistically equivalent initi
conditions. The densityP(p) is obtained by normalizing the
frequency of occurrence of a given strategy in the whole
of the H histories. The number of iterations is fixed b
checking that a stationary configuration has been reache

We also compute other parameters that describe the
0-2
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DYNAMICAL QUENCHING AND ANNEALING IN SELF - . . . PHYSICAL REVIEW E 64 016130
of the system. One is the attendanceA(t) averaged over the
H histories as a function of the iteration numbert; in the
following we quoteM (t)[A(t)/N, to facilitate the compari-
son for different values ofN. A second important paramete
is the fraction of agentsCs(t) that change their individua
strategies as a function of the iteration number. This fract
provides a direct measure of the stability of the state that
been reached. We will useP` to refer to the asymptotic
distribution,t→`, whenever the system reaches a station
state.

A well known result obtained within the framework of th
pure MG is a strong polarization of the population. A dist
bution P`

MG(p) is reached in which essentially half of th
agents always go to the bar while the other half never go.
a consequenceM (t)→1/2 except for random fluctuation
due to the updating of individual strategies that takes plac
all times @6,7#.

The evolution of a system with the GMG rules andn
ÞN/2 has been studied by Johnsonet al. @11# and by us@8#.
If the reduced acceptable level of attendancem[n/N is
close enough to 1/2 an equilibrium situation is reached
resembles the MG results@see Fig. 1~a!#. Equilibrium is
shown by the fact thatM→m andCs(t) stabilizes at a con-
stant, nonzero value after a transient. In Fig. 1~b! we show
typical plots of M (t) and Cs(t) for this situation. On the
contrary, ifm is larger than a critical valuemcr ~see below! a
situation is reached in which no further updating of the str
egies takes place~quenchedconfiguration!. In Fig. 2 we
show an example of the distributionPq(p) that is obtained
by settingm.mcr.1/2.

The distributionPq(p) that is obtained strongly differs
from P`

GMG(p). The fact thatCs(t) tends exponentially to 0
@see Fig. 2~b!# indicates that a situation has been found t
is completely different from the one noted above. This h
pens because the largest fraction of the population has ga
many points and even though their accounts may fluctu
they are not expected to fall below the threshold required
update their individual strategies. The consequence of th
thatM stabilizes at a value that may be far fromm. While the
situation form;1/2 can be thought of as some kind of the
modynamic equilibrium, this case should instead be ass
ated to a quenched configuration in which the state varia
are rapidly fixed at values that are close to the initial con
tions.

We have performed extensive numerical simulations
investigate this situation using values ofm above and below
1/2 and several values ofG. As expected an overall symme
try is found aroundm51/2. This is because matching a
attendance level greater than 1/2 is equivalent to matchin
symmetricabsencelevel equally greater than 1/2. As wi
shortly become evident the symmetry is not strict. We d
cuss this point in Sec. V.

Several features that are displayed in the quenched d
bution shown in Fig. 2 are worth noting. In the first place
is found thatPq(p)50 for 0,p,1/2 andm@1/2. This can
easily be understood. Whenm@1/2 the agents that havep
,1/2 lose more frequently than they win and therefore
date their attendance strategies more frequently, increa
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the value ofp whenever possible. Once their individual stra
egies are greater than 1/2 the inverse happens, agents se
lose points, and therefore are not forced to update their in
vidual strategies. This also explains why the width of t
hump nearp51/2 turns out to be a function ofdp only.

The above arguments indicate that the shape ofPq(p)
strongly depends upon the initial conditions. This is the r
son why we prefer to call this effect ‘‘quenching’’ rathe
than ‘‘freezing.’’ The latter suggests a new ordering th
bears no relationship to the initial conditions, while th
former indicates that a dynamics has been imposed that
denly reaches a fixed point, leaving the internal parame
of the system at values that are close to the ones chosen
the initial conditions and that may be far from equilibrium

In Fig. 3~a! we illustrate some cases in which quenchi
takes place. We plot the asymptotic value of the redu
attendanceM reached by the system as a function ofm,
displaying only the sector withm.1/2, for several values o
G.

In Fig. 3~b! we also show a plot of the dispersionsM of
the values ofM obtained in all theH histories of the en-

FIG. 1. GMG and BAM without quenching. In this case,N
51001, G51, andm5600/1001. The data are averaged over 2
histories. In~a! we showP`(p) for both cases;~b! illustrates the
time evolution of the reduced attendanceM (t) andCs(t), the frac-
tion of moving agents. Notice thatCs(t) does not vanish.
0-3
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semble „sM
2 5(h

H@A`(h)2^A`&H#2/NH…. This parameter
plays the role of a susceptibility. It displays a peak located
the transition region and is essentially constant outside
The finite width of the peak as well as the irregularities ofM
in the transition region are to be attributed to the finitenes
the system.

It is possible to associate a critical valuemcr with the
change between the two regimes. In the numerical exp
ments, the large fluctuations ofM nearmcr are due to the fac
that some of the histories that make up the ensemble ha
to quench while others, purely due to random fluctuatio
instead reach equilibrium. Asm increases, the proportions o
the two types of history gradually change leading to the s
ation in which all possible evolutions lead to quench
states. The peaked behavior ofsM at m5mcr supports the
picture that a sort of critical phenomenon actually takes pl
in the system for a precise value ofm.

There are several criteria to definemcr . We have chosen

FIG. 2. BAM and GMG with quenching, for the same values
N and G as in Fig. 1, butm5800/1001. In~a! we show that the
shape ofP(p) has little change for the BAM, while the GMG
distribution is strongly modified. Correspondingly, in~b! one can
see that the GMG does not reach equilibrium (MÞm) because the
system stops evolving (Cs50) very rapidly. Data for the GMG are
averaged over 3000 histories. On the brokenx axis we show that the
BAM does not quench even after 106 time steps.
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to define it as the minimum value ofm for which the dynam-
ics leads the system to a situation in which the whole po
lation has accumulated a fixed gain, which we~arbitrarily!
chose to be not less than 20 points. In Fig. 3~b! we show
w20, the fraction of the population that has accumulated
least 20 points, as a function ofm. It is clear that if this
happens any further changes in the distributionP(p) or in
the attendance are extremely unlikely to occur. Another p
sibility is to choose the value ofm that corresponds to the
intersection of the lines that are associated with the two
gimes or the maximum ofsM . Again, the differences be
tween these definitions are to be attributed to the finitenes
the systems that we have studied.

The value ofmcr depends upon bothG andN. Changes in
G have not been explored previously and cause impor
changes in the region in which quenching occurs as wel
in the shape of the distributionP`

GMG(p). The effects of the
value ofG on mcr can be seen in Fig. 3~a!. The general phase
diagram~see Fig. 4! shows two regions that correspond
quenched and unquenched systems. The border betwee
regions is given by the functionmcr(G). Finite-size effects
are also displayed in this figure through the values ofmcr(G)
for two values ofN. The results displayed in Fig. 4 allows u
to conjecture that for an infinite system withG51 andm
51/2 the usual settings of the minority game lead to
unstable quenched phase.

FIG. 3. ~a! Reduced attendance as a function ofm, for N
5101. It can be seen thatmcr is a function ofG. Size effects are
shown in the inset.~b! Transition from a nonquenched (w20Þ1) to
a quenched state (w2051).
0-4
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The changes in the distributionP`
GMG(p) that are due to

changes inm keepingG fixed are shown in Figs. 1, 2, and 5
An increase inm produces an increasingly asymmetric d
tribution. This hold up to the point at whichm.mcrit and
quenching occurs, giving rise to a humped distributi
Pq

GMG(p). The changes introduced by different values ofG
are shown in Fig. 5. The overall effect of this parameter is
increase the polarization, preserving the level of asymm
fixed bym. Values ofG,1 are reflected in distributions tha
are barely peaked at the corners. The polarization incre
for G51 and values ofG that are only slightly larger than 1
produce distributionsP`

GMG(p) that vanish for all values ofp
except in the close neighborhood ofp50 andp51. Values
of G that are even larger place the system into the quenc
region of the phase diagram because every successful in
move produces such a large gain that a revision of the s
egy becomes extremely unlikely; therefore the evolution
the system produces only mild changes in the initial dis
bution.

FIG. 4. Phase diagram for the GMG in them-G plane.n shows
an analytical solution for ad-type initial condition, whileh andL
correspond to numerical solutions starting from a uniform distri
tion. The critical border for the BAM withd-type initial conditions
would be a vertical line atG.1,22 forN5100.

FIG. 5. Change ofP(p) with G, for m50.6.
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III. THE BAM

The dynamics of the GMG does not keep track of t
situations that lead to successes or failures. However, th
stressed in the BAM. It has been customary to accept
agents derive utility in two situations: one when they dec
to go to the bar andM<m and also when they refrain from
going to the bar andM.m.

We propose for the BAM an adaptive dynamics that
based upon the same information as in the GMG but use
differently in order to keep track of the situations that lead
gains or losses, i.e., by correlating them with the action
going or not going to the bar. To this end we introdu
‘‘points’’ and ‘‘credits.’’ Points are gained or lost if the op
tion of attendingthe bar is correct or not. Credits are inste
gained or lost depending whether the option ofnot attending
the bar is correct or not. We therefore carry a double
count. If an agent chooses to attend~not to attend! the bar
andM,m (M.m) she gains a point~a credit!. Otherwise,
she loses a point~a credit!. When either the number of point
or the number of credits falls below some threshold, the c
responding account of points or credits is reset to zero
the strategy is changed in the same fashion as already m
tioned for the GMG.

Note that the attendance strategy of an agent is chan
by either of two reasons. Such an updating rule makes us
information that is lost with the scoring rules used for t
GMG. Suppose, for instance, that an agent having initia
all her accounts at zero chooses to go to the bar one da
which M,m and chooses not to go the next day when
attendance turns out to be againM,m. Within the GMG
rules she ends up with zero points and her strategy is
updated. With the double account of the BAM she ends
instead with one positive point and one negative credit an
therefore forced to update her strategy@12#.

We have performed numerical simulations using this d
namics with similar settings as those reported in the prec
ing section. The results for the BAM are compared w
those obtained with the GMG dynamics in Figs. 1 and
When quenching is absent in the GMG, the asymptotic d
tributions P`

BAM(p) can barely be distinguished from
P`

GMG(p). For this case the values of the attendanceA(t)
and Cs(t) for the BAM are shown in Fig. 1~b!. A strong
difference occurs, however, whenm.mcr and the GMG gets
trapped in a quenched configuration. For the same sett
the BAM converges to equilibrium instead. The asympto
distributionP`

BAM shows a strong polarization and the atte
dance reaches the accepted level without difficulty. The
ture of the asymptotic state has no difference from that
m,mcr . This can be seen in Fig. 2~b!.

A more profound difference between the two mode
arises when the above analysis is repeated forGÞ1. While
the GMG dynamics can be checked to lead to quenched
figurations for essentially all values ofG, as shown in Fig. 4,
the BAM displays no quenching independently of the va
of G. Quenching can, however, occur in the BAM but f
different initial conditions from a uniform distribution. We
turn to this point in the next section.

-
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IV. ANALYTICAL DISCUSSION

In this section we discuss analytically the relevant fe
tures of the density distributionP(p) as well as the occur
rence of quenching within both the GMG and the BAM.

A. The density distribution

The shape of the distributionP(p) is the combined resul
of the actions of the whole ensemble of agents. Each pla
adjusts her attendance, attempting to minimize her individ
loss. When equilibrium is reached the resultingP`(p) for
both GMG and BAM concentrates the population in the i
mediate neighborhood ofp.0 and p.1, plus an almost
vanishing contribution from intermediate values. The ratio
the areas below the two peaks is, essentially, equal tom/(1
2m). An intuitive guess forP(p) could well be instead a
sharply peaked function centered atp.m. The difference
has to be sought in the properties of the distributionP(A)
that gives the probability of occurrence of a party ofA cus-
tomers attending the bar. The distributionP(A) is of course
completely determined byP(p). If P(p).d(p2m) the cor-
respondingP(A) turns out to be large for values ofA that
differ from the optimal one; the highly polarized equilibriu
distribution that is actually generated produces instea
P(A) that is much more concentrated nearA5Nm.

Let us assume without loss of generality that all the age
distribute themselves intoD different strategiespi , i
51, . . . ,D according to

P~p!5(
i

D
ni

N
d~p2pi !, ~1!

where( i
Dni5N. With this assumption, the distributionP(A)

can be written as

P~A!5 (
l 150

n1

••• (
l D50

nD

)
i

D F S ni

l i
D pi

l i~12pi !
ni2l iG

3dS A2(
j

D

l j D . ~2!

The value (A2Nm)2 measures the departure from the op
mal attendance, and thereforeC 25(AP(A)(A2Nm)2 can
be taken to measure the square of the average cost inc
by the ensemble of agents while adjusting their individ
strategies@13#.

Although Eq.~2! is in general difficult to evaluate,C 2 can
be calculated without great difficulties. In fact if its definitio
is used together with Eq.~2!, the summation overA can be
performed first, taking advantage ofd(A2( j

Dl j ), and all
the summations over thel j indices decouple from eac
other. We get

C 25 (
l 150

n1

. . . (
l D50

nD

)
i

D F S ni

l i
D pi

l i~12pi !
ni2l iG

3S Nm2(
j

D

l j D 2

. ~3!
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Moreover, from Eq. ~1!, ^p&5( inipi /N and ^p2&
5( inipi

2/N; thus in the limitD→` one gets

C 25N2~m2^p&!21N~^p&2^p2&!. ~4!

In Eq. ~4! ^p& stands for*pP(p)dp. If P(p)51/N, as for
the initial conditions chosen in all the simulations in th
preceding sections, the dispersion turns out to beC 2

5N2(m21/2)21N/6. We thus see that such an initial co
dition is a good guess for the traditional settings of the M
when m.1/2, but is indeed very poor for the GMG whe
mÞ1/2.

The equilibrium result̂ p&5m that is always found is
seen to eliminate theO(N2) terms in C 2. This is also
achieved with the guessP(p)5d(p2m). However, all
O(N) terms do not cancel becauseC 25Nm(12m). If the
two-peaked equilibrium distribution is roughly approximat
by P(p)5(n1 /N)d(p2p1)1(n2 /N)d(p2p2) one readily
sees that theO(N2) terms are eliminated whenn1p11n2p2
5mN. The O(N) terms also cancel if the two peaks arep1
50, n15N(12m) andp251, n25Nm.

From this point of view, quenched states are far fro
optimizing the average aggregate costC 2 because the corre
spondingPq(p) do not even cancel theO(N2) terms. The
relaxation dynamics that tends to minimize individual loss
is thus seen to also optimize a global parameter (C 2) only if
equilibrium is reached. Otherwise the relaxation stops wh
no agent loses. This situation, in general, does not co
sponds to a minimal average cost.

B. BAM

In this section we discuss the occurrence of equilibriu
and quenching within the BAM. This can only be done wit
out any approximation if one assumes a distributionP(p)
5d(p2po). This is seen to be appropriate except forO(N)
terms in the dispersion of party sizes.

Given an acceptable level of attendancen, if all agents
have the same attendance strategypo , the probability of oc-
currence of a party ofless than nagents isS(N,n,po) where

S~N,n,po!5 (
i 50

n21 S N21

i D po
i ~12po!N212 i . ~5!

This is a continuous and monotonically decreasing funct
of po and satisfies the following three conditions:

S~N,n,0!51 ;n, ~6!

S~N,n,1!50 ;n, ~7!

S~N,n1m,po!>S~N,n,po! ;po ,m.0. ~8!

If an agent decides to go to the bar, her account in points
remain equilibrated when the expected reward equals the
pected fine, i.e., when the attendance strategypp that is com-
mon to all the agents satisfies:

S~N,n,pp!5
1

11G
. ~9!
0-6
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If an agent decides instead not to go to the bar a sim
condition can also be written for her account in credits. T
is

S~N,n11,pc!5
G

11G
. ~10!

GivenG, N, andn, the two equations~9! and~10! define the
two rootspp and pc that are, respectively, the probabilitie
with which all agents have to go if they hope to equilibra
respectively, their accounts of points and credits.

Assume now thatG51. Bearing in mind Eq.~8! the two
roots satisfypp,pc . If the agents choose to attend the b
with a probability po,pp , they gain points. On the othe
hand, if they choose to attend with probabilitypo.pc they
gain credits. However, due to the fact thatpp,pc if they
gain points they lose credits and vice versa. In either cas
agents will continue to update their strategies, quenchin
not possible, and equilibrium is eventually reached.

For ad-type distribution of strategies the only chance
have a quenched phase using the BAM dynamics is to fin
situation in whichpc<pp . For finiteN this can only happen
if G.1 ~see Fig. 6!. From the above two equations it is ea
to see that the rootpc becomes smaller for increasing valu
of G and the opposite happens forpp . A value Gcrit

BAM can
eventually be found at which both roots satisfypp5pc

[pcrit . For anyG.Gcrit
BAM the regions for winning points

and credits start to overlap and quenching occurs withi
narrow overlapping interval (pc ,pp). In Fig. 7 we show the
two rootspp and pc as functions ofG. It further turns out
that for finite values ofN the value ofGcrit

BAMis nearly inde-
pendent ofm.

The evolution of ad-type distribution centered at a valu
of po depends upon the choice ofG andm. If G.Gcrit

BAM and
po is inside the quenching interval (pc ,pp) the distribution
will not change and the attendanceM will remain fixed at the
value chosen for the initial conditions. This is so because
agents win both points and credits. Ifpo lies outside the

FIG. 6. The rootspp andpc of Eqs.~9! and~10! are exemplified
for N520 and n514. These values are chosen for the sake
clarity of the figures. Notice that asG increases,pc becomes
smaller andpp becomes larger.
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quenching region, agents are forced to update their strate
either because they lose points or because they lose cre
The average attendanceM will approach the valuem. Note
that the average attendance and the average of indivi
strategies are completely equivalent, i.e.,M5*pP(p)dp.
Therefore when the average attendance approaches
quenching interval (pc ,pp) the evolution will progressively
come to a stop. For values ofG up toG;5Gcrit the quench-
ing interval (pc ,pp) is always small (upp2pcu;0.1) and the
convergence to a quenched phase is in general very slow
the mean of the distribution approaches the quenching in
val, a smaller fraction of agents have to update their stra
gies and therefore the fractionCs(t) tends slowly to zero,
very nearly approaching a power law, for a considera
number (;106) of iterations. SinceGcrit

BAM is almost indepen-
dent of m this behavior does not change with its particu
value. In the cases in whichpo¹(pc ,pp) the corresponding
~asymmetric! distributions Pq

BAM(p) associated with
quenched configurations look similar to those associa
with equilibrium because they involve agents with all po
sible attendance strategies.

C. GMG

A similar analysis as the one performed for the BAM c
be made for the GMG. If the system is prepared with
distribution P0(p)5d(p2po) the single account of points
remains equilibrated provided that the probability of winni
Pw(N,n,p) satisfies:

Pw~N,n,po!5poS~N,n,po!1~12po!@12S~N,n11,po!#

5
1

11G
. ~11!

In Fig. 6 we show an example of the function
S(N,n,p), S(N,n11,p) ,andPw(N,n,p) for typical values
of N andn, andn.N/2.

f FIG. 7. Quenching for the BAM ford-type initial conditions is
possible forG.Gcr . The rootspp andpc are plotted as functions
of G and the indicated values ofm. The two roots are equal forG
5Gcr . The value ofGcr is largely independent ofm.
0-7
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The situation for the GMG is completely different from
the BAM. The functionPw(N,n,p) has one maximum in the
interval 0<p<1, and to a high degree of accuracy displa
the symmetryPw(N,n,p)5Pw(N,N2n,12p). The symme-
try, however, is not strict. To see this note that ifn5N going
to the bar is always a winning option no matter the option
the rest of the agents. Ifn50, the action of not going is no
enough to win, because that depends upon the choice m
by all the other agents.

A critical valueGcr
GMG and a critical probability of atten

dancepcrit
GMG can be defined for the GMG as thep value that

corresponds to the maximum ofPw(N,n,p) given by Eq.
~11! through

Pw~pcrit
GMG!5Pw

max5maxpPw~N,n,p!, ~12!

Gcr
GMG5

1

Pw
max

21. ~13!

For given values ofn and N quenching is produced ifp
5pcr and G>Gcr . The values ofGcr for the GMG are
completely different from those of the BAM. While in th
latter there exists a common value ofGcr independent ofm
this is not the case for the GMG~see Fig. 4!.

Above Gcr and with the initial conditionP0(p)5d(p
2p1), the quenching condition is satisfied for anyp1 in the
interval p,,p,p. , wherep, andp. are the two roots of
Eq. ~11!. Any system prepared withp1 within that region
will rapidly be quenched. Assume for the sake of concre
ness that we choosem.0.5. The system evolves quite di
ferently if po,p, or po.p. . In the first case the whole
population of agents is forced to update their strategies
change the individualp’s in order to surpass the valuep, .
Once this happens, updating progressively comes to a sto
the average attendance gets into the interval (p, ,p.) and
the system gets quenched with a value ofM below the ac-
cepted fractionm. SincePw(N,n,p) is such thatp. is very
nearly similar tom, for p1.p. the initial condition of a
d-type distribution changes toP`

GMG(p) with a mean value
that is very close tom; this cannot be distinguished from a
equilibrium distribution. In addition, updating of strategi
continues to take place continuously. Examples are show
Fig. 8.

D. Finite-size effects

An estimate of the finite-size effects of the models on
values ofGcr and pcr can easily be made for the usual se
tings of the MG, by assuming ad-type distribution as an
initial condition. Form51/2 and from Eqs.~11! and ~13! it
follows immediately thatpcrit51/2 ;N and the value of
Gcrit

GMG can directly be estimated from the value ofPw
GMG(p

51/2) using Eq.~11! and standard asymptotic expansions
turns out that

Gcr
GMG5

A@2pN#12

A@2pN#22
. ~14!
01613
s

f

de

-

to

as

in

e

t

If this result remains valid for a uniform initial distribution
the usual settings for the MG (G51 andm51/2) correspond
to a critically quenched system.

In Fig. 9~a! are shownGcrit
GMG(m51/2) and Gcrit

BAM(m

51/2) as a function of 1/N. It is seen thatGcrit
GMG.Gcrit

BAM as
N→`. The corresponding values formÞ1/2 can be related
to those shown in Fig. 9~a!. In the first place one should
notice that the value ofGcrit

BAM is independent ofm. On the

other hand, the curves ofGcrit
GMG(mÞ1/2) can be reduced to

the one shown throughGcrit
GMG(m)5(am1b)Gcrit

GMG(m
51/2) to a very good degree of approximation@a and b
; constants, up to termsO(1/N)#.

Concerning the values ofpcrit one can check@Fig. 9~b!#
that pcrit

BAM and pcrit
GMG approach each other and tend to t

common limiting valuepcrit
` 5m, as expected from a naiv

estimate of the probability of attendance. One can also c
jecture thatGcrit

BAM(`)51.

V. ANNEALING

The situations described hitherto indicate that outsid
very restricted region ofm and for different initial conditions
the dynamics of the GMG rapidly approaches quenchi
The many agent system stops evolving, the attendance
mains fixed at a value that is far from the tolerated fract
m, and all the other internal parameters remain close to
initial conditions. In contrast, the BAM always approaches
distribution P`

BAM(p) that corresponds to what one expec
of thermodynamic equilibrium: the attendance fluctua
around the expected fractionm, agents continue to updat
their individual strategies, andP`

BAM(p) remains stationary.
There is a way to regain equilibrium within the fram

work of the GMG through an iterative procedure that can
regarded as an annealing protocol. The key point is to rea

FIG. 8. DistributionsP(p) for the GMG ~right axis!, obtained
from three initial conditionsd(p2po). We also showPw ~left axis!
to help to understand the evolution of the systems. The rootsp,

and p. correspond to the two rootsPw51/2. In this case,m
575/101.
0-8
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that quenching is produced by the memory stored in
points gained by the agents. In fact the quenched state
mains unchanged because on the average agents contin
gain points. To correct the quenched phase, a procedure
be implemented that consists in periodically obliterating
memory of the system. This is done by removing all t
points gained by all the agents in each iteration. In e
annealing episode the system is allowed to evolve freely d
ing a maximum ofns steps; at the end, several paramet
are calculated: the fractionw5 of agents that have gained n
less that 5 points, the relative attendanceM, the fraction of
histories f h where the system does not reach a quenc
configuration in the allowedns steps, and the fractionf q
5nq /ns , wherenq is the actual number of evolution step
that are needed to quench the system.

The results obtained are shown in Fig. 10 for two valu
of G and m5850/1001. At the end of the first episode th
distributionPq @Fig. 10~a!# that is found is entirely similar to
the humped distribution shown in Fig. 2, andw551, thus
corresponding to a quenched phase. As agents are repea
deprived of points some of them are increasingly forced
update their strategies. ForG51 @Fig. 10~b!# and during the
first 30 annealing episodes very few steps are require
order to havew551; after ;35 annealing episodes a cle

FIG. 9. ~a! Gcrit vs 1/N up toN51000. Equation~14! provides
an excellent fit that cannot be distinguished from numerical data
the GMG,G51,m50.5; ~b! pcr as a function of 1/N for the same
values ofm.
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transition takes place that can be interpreted as a gra
melting of the system: the fractionw5 drops whilef h and f q

grow abruptly, almost reaching their maximum possible v
ues. ForG51.1 @Fig.10~c!# this transition is not present a
can be seen from the fact thatw5 is constantly equal to 1
while f h50. It is most remarkable, however, that the relati
attendanceM still reaches the valuem, as forG51. In other
words, the annealing protocol is seen to be able to drive
system towardM.m with or without a change of the phas
of the system.

r

FIG. 10. Annealing in the GMG.
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VI. CONCLUSIONS

In the present work we have discussed the s
organization properties of two multiagent models, the BA
and the GMG. We have shown the relevance of two con
parameters. One is the fraction of the population of agentm
that has to combine in order to make the correct decis
The other isG which represents the gain produced by a c
rect decision, measured in units of the fine paid for mak
the wrong one. For the sake of concreteness we have
rowed the framework of the BAM in which the decision th
has to be made is to go or not go to a bar. The decision is
correct one if the fraction of the population that has decid
to go does not exceedm.

The system under consideration lacks any interaction
internal correlation among the agents. Each agent feels
presence of the rest only through the value of an aggre
parameter that is the total attendance, and rewards or pe
ties of individual actions are decided with respect to its p
ticular value at each moment. Otherwise, agents act inde
dently from each other. With these rules, the many ag
system adapts and always reaches stable asymptotic con
rations. These are, however, of quite different nature depe
ing upon the values of the control parameters and of
initial conditions, and on the information that is used
guide the individual actions.

The usual framework of the minority game, if generaliz
to take into account arbitrary values ofm, gives rise either to
states of equilibrium or to quenched configurations. T
former have a density distribution of individual strategi
that depends only upon the values ofG andm and remains
stationary while a fraction of the populationCs continuously
updates their strategies. Quenched states have instead
quency distributions that may be very different depend
upon the initial conditions, whileCs drops exponentially to
zero in all cases.

A phase diagram for the GMG can be established in
m-G plane. Quenching occurs outside a region limited b
critical line mcr(G). This borderline has been obtained n
merically for uniform initial conditions. If ad-type distribu-
tion is assumed analytical expressions can be obtained
both cases finite-size effects are found. A rigorous estim
can be made for an infinite system in the second case.
found that ifN→` the point (G51,m51/2) belongs to the
critical line. A numerical estimate of finite-size effects for
uniform initial distribution is also in agreement with th
result. It is interesting to note that these are the usual sett
for the minority game widely used in the literature.

The shape of the distributionP(p) is the combined resul
of the actions of many ‘‘independent’’ agents. In spite
such independence we have proved that the equilibrium
tribution optimizes the statistical occurrence of the most c
venient coordinated state or, equivalently, minimizes the
erage aggregate cost of the ensemble of agents.

A quenched state is reached when the individual upda
of strategies stops. This should not be considered to co
spond to a ‘‘frozen’’ configuration, however. If this were th
case, an internal ordered state would be found bearing
relationship to the initial conditions. Contrary to this, th
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quenched state is far from being unique; the ‘‘glassy’’ stru
ture of the quenched phase lacks any preferred interna
dering. This should be regarded as the signature of the
sence of interactions among the agents and has to
attributed purely to dynamic effects. While equilibrium
associated with the optimization of the global magnitud
this is no longer true for a quenched configuration.

Reaching a quenched phase is a direct consequence o
evolution dynamics contained in the rules for updating
individual strategies. This effect is evident when the GMG
compared to the dynamics arising from the BAM with mixe
strategies, as we have presented here. In contrast to
GMG, when starting from a uniform distribution the BAM
always reaches a state of equilibrium, independently of
values ofm andG. The two models differ in the use of th
available information. While the GMG dynamics only kee
a record of good and wrong decisions, the seemingly mi
modifications implied in the BAM rules allow it to kee
track also of thereasonsfor such successes and failures. T
system thus keeps a better ‘‘memory’’ of the previous ste
in the dynamics. The consequence of this is that the sys
always self-organizes in such a way thatM→m.

The many agent system that has been presented her
several features that are reminiscent of the physics of m
body systems. In the first place one should note tha
quenched phase can be induced for critical values ofm and
G. A sort of order parameter can be established with
relative attendanceM (t). Two regions can be individualized
in parameter space, one in whichM (t)→m and the other in
which M (t)→M`Þm. For critical values ofm and G, the
system undergoes an internal transformation reflected b
peak in the dispersionsA that recalls the behavior of th
susceptibility at a second order phase transition.

Although the model does not contain any two-body int
action, within this analogy ‘‘particles’’ accommodate them
selves following an occupational constraint~the maximum
allowed attendance! very much in the same fashion as in
many fermion system. To support this viewpoint, one co
note that very few ‘‘particles’’ participate in the dynamic
The parameterm fixes the total attendance and therefo
plays the role of the chemical potential through an effect
collective interaction. From this point of view individua
gains should be related to~the negative of! a kind of single
particle energy: those agents that have accumulated l
gains are less likely to participate in the dynamics.

A resemblance can also be established between quenc
in the GMG and similar situations found in many body sy
tems. In fact we have described a gradual modification of
quenched configuration through a procedure that is enti
similar to an annealing protocol. It turns out that a quench
state can gradually be ‘‘melted’’ into a state of equilibrium
all the points that have been gained by the agents are p
odically eliminated. The points accumulated by the age
keep memory of the previous results and each resetting
be thought of as an exchange of ‘‘energy’’ with a therm
bath in order to reach equilibrium.

The concept of temperature has been introduced in
MG in several contexts. In all cases it causes random fl
tuations. In this work we have not attempted to introduce
0-10
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temperature. It is worthwhile to mention, however, that
fact there is an individual source of fluctuations present,
sociated with the update ofpi described in Sec. II. We reca
that every time a new value ofpi has to be chosen, it is
randomly selected from an interval of widthdp around it.
Hence, this fluctuation acts as a source of fixed tempera
T0 say, and can be recognized as the final reason that
plains why the distribution functionP(p) does not simply
converge to the sum of severald ’s. Hence, our work can be
considered to describe the relaxation to equilibrium at t
fixed temperatureT50, except when the annealing protoc
is applied. This framework could be extended to a situat
at TÞ0 by introducing fluctuations, allowing, for instanc
individual agents to change their assistance strategies pr
bilistically.

The BAM has been worked out to show how intern
coordination of markets or economic systems can de
from uncoordinated individual actions that are inspired b
common belief. It is a clear example in which an ensem
of agents with limited information about somebody els
decisions can nevertheless give rise to a self-organized
tern within a scheme referred to as ‘‘bounded rationality
The relaxation process recalls what in economics is kno
as ‘‘tatonnement.’’ As opposed to this, the ‘‘rational expe
tations’’ solution to the BAM or the GMG would be a dis
tribution P(p)5d(p2m) because it describes the only com
mon action that is consistent with the generalknowledgeof
all agents about everybody else’s decisions concerning
w

e

d
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acceptable attendance. It is interesting to note that this s
tion is in general far from equilibrium and hence is neith
stationary nor optimal.

The minority game, regarded as a simplified version
the BAM, has also been repeatedly presented as a schem
framework with similar interest for economics. However, t
occurrence of quenched asymptotic configurations in
straightforward generalization of the MG puts some limi
tions on the applicability of the model to stylized econom
situations. Quenched configurations are trivial examples
equilibria because the adaptation dynamic has stopped,
they are neither Nash equilibria nor Pareto optimal. In fact
MÞm many individual situations can be improved witho
harming the situation of any other agent. It is interesting
note that such configurations are produced by the limited
that agents make of the available information. The GMG c
therefore safely be used if quenching is avoided or spe
situations are considered in which this is not particula
relevant. Otherwise, one should bear in mind that to simu
market environments it is mandatory to assume that
agents must make full use of all the available information
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