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Dynamical quenching and annealing in self-organization multiagent models

E. Burgos'* Horacio Ceva;" and R. P. J. Perazzd*
!Departamento de Bica, Comisia Nacional de Energi Atomica, Avenida del Libertador 8250, 1429 Buenos Aires, Argentina
’Departamento de Bica FCEN, Universidad de Buenos Aires, Ciudad UniversitaPabelln 1, 1428 Buenos Aires, Argentina
3Centro de Estudios Avanzados, Universidad de Buenos Aires, Uriburu 950, 1114 Buenos Aires, Argentina
(Received 21 December 2000; published 27 June 001

We study the dynamics of a generalized minority ga@®G) and of the bar attendance modBIAM) in
which a number of agents self-organize to match an attendance that is fixed externally as a control parameter.
We compare the usual dynamics used for the minority game with one for the BAM that makes a better use of
the available information. We study the asymptotic states reached in both frameworks. We show that states that
can be assimilated to either thermodynamic equilibrium or quenched configurations can appear in both models,
but with different settings. We discuss the relevance of the para@dteat measures the value of the prize for
winning in units of the fine for losing. We also provide an annealing protocol by which the quenched con-
figurations of the GMG can progressively be modified to reach an asymptotic equilibrium state that coincides
with the one obtained with the BAM.
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I. INTRODUCTION next day, a situation in which, again, everybody loses be-
cause many could go without crowding. In an iterated ver-
In recent times considerable attention has been given tsion of the model agents plan their attendance for the next
the description of self-organization processes in multiagentew days. In this case it is more evident that the only stable
models. These are geared to explain h@nd which indi-  solution is a situation in which a diversity of individual strat-
vidual decisions give rise to cooperative effects that show uggies compensate each other, saturating the capacity of the
in the behavior of the system as a whole. Such models havear every day. The system self-organizes ir{dgnamio
a wide number of interesting applications in a variety ofNash equilibrium in which every agent optimizes their re-
situations that range from routing of messages in an inforspective situation given what has been done by the rest of the
mation network to the way in which equilibrium {dynami-  players. In this case any player who changes her rules uni-
cally) achieved by an ensemble of economic agents. laterally ends up losing. Such equilibrium is also Pareto op-
The main question posed in this line of analysis is how aimal because no agent can improve her situation without
system composed of multiple agents acting in a decentralizeldarming that of some other player. If adaptation is stochastic,
fashion is able to reach a state of “macroscopic order” inthe attendance equilibrates at the accepted value with ran-
which individual decisions appear to be coordinated with onedlom fluctuations.
another. A well known example of this line of research is the An alternative version of the BAM called the minority
bar attendance modé@AM) proposed by Arthur in Refl]. game(MG) has recently received much attenti@-6]. The
This model was developed to illustrate a case of coordinatiomain feature of this framework is that agents derive utility
through a process that can be considered as inductive learmhenever their choice coincides with that of the minority.
ing. Self-deception is also evident within this framework. The
In the BAM a (large) number of individuals have to de- MG has been presented as a simplified version of the BAM.
cide whether or not to go to a bar at a certain date. Theyn the present paper we concentrate on the approach intro-
share the common perception that attendance is not desiratdeiced in Ref[6], making a detailed comparison of the MG
when the number of people who are present exceeds a critand the BAM. Johnsomt al’s original model uses the re-
cal value, which is smaller than the total population of cli- sults of several previous rounds of the gafie. it has some
ents. Otherwise they derive utility from going to the bar.  kind of memory. In earlier work[ 7], and following the ideas
A dynamics is proposed by which each agent individuallyof Cavagna and co-workef$], we proved that a “simpli-
updates her criteria to decide on attendance. These are bad@t” version of the modelthat makes no use of mempiy
upon public information, which concerns the total attendancéndistinguishable from the original formulation. In this work
in previous days. Agents use inductive reasoning to predicive follow the same approach for both the MG and the BAM.
the number of customers on the following day. We are aware that this point is still controversial in relation
It is simple to realize that the model is self-deceiving: if to the alternative formulation of Refg3,4]. We will see that
everybody decides to attend, crowding is produced and ewhe MG, besides being a particular case of the B&idmely,
erybody loses. Everybody will then refrain from going the one in which the optimal attendance has been fixed at half
the total number of customgrsmakes a different use of the
same informatior}8].

*Email address: burgos@cnea.gov.ar The treatments of the BAM have traditionally,9] been
"Email address: ceva@cnea.gov.ar based upon genetic algorithrhs0]. Each agent is assumed
*Email address: perazzo@df.uba.ar to keep a set of strings that encode her possible attendance
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schedules for the following days. After that period eachparameters but turn out to be very different in all the rest. We
agent computes the outcome of all her possible plans anshow that an essential parameter that governs the self-
chooses the best to use during the next period. The attewrganized configuration of the system is determined by the
dance schedules are considered as the “genomes” of a géewards and punishments that are contained in the scoring of
netic algorithm and are updated by selection, random mutasuccesses and failures of the agents. The control parameter is
tions, and crossover. The BAM can be regarded as aff'e valueG of the prize for winning relative to the fine for
iterated version of the MG, i.e., one in which players have td0sing. Ordinarily the effect of this parameter has been dis-

make their choices for several rounds of the same gamégdarded and the only case studied in the literatu@=sL.
There is, however, one important difference. The BAM in- Quenching and equilibrium regions change significantly for

volves only (the iteration of pure strategies where players ) ) )
either go or do not go to the bar. The players in the MG have N the next section we describe and characterize the
insteadmixedstrategies, i.e., they make their choice of goingdueénched state in the GMG and discuss the phase diagram
or not goingwith a given probability The iterated pure strat- that is found ifG is left as a free parameter. In Sec. Ill we
egies in the BAM undergo an adaptive process. Within thef@mpare this to the BAM. In Sec. IV we provide an analyti-
MG mixed strategies also change. Each agent randomly afal @scussmn to support the results presentgd in the previous
tends the bafwith a given probability and collects points or S€ctions. In Sec. V we present an annealing protocol that
pays fines depending on whether the attendance is below §fakes use of the fact that quenching is a consequence of the
above the acceptable level. The mixed stratéigy, her at- Memory stored in the system encoded by the points gained
tendance probabilityis changed when her account falls be- By the agents. The protocol allows the system to reach equi-
low a given threshold. Both the BAM and the probabilistic lIPrium using the MG dynamics by progressively modifying
approach of Ref[6] can be regarded as mean field descrip-the guenched state, removing the memory stored in the sys-
tions because only the aggregate effect of the whole erfém.

semble of agents is relevant for both adaptive processes. On

the other hand, the mixed strategy played by the agents in the Il. THE GMG MODEL
MG can be assimilated to a time averaged version of the ) ) _
iterated attendance schedules of the players in the BAM. ~ We consider anN-agent system in which each has a

In order to render possible a comparison between the M@nixed attendance strategy expressed by a probalplit
and the BAM two elements have to be considered. On the=1,2, ... N) of going to the bar. We taka to be the ac-
one hand a generalized version of the NtBe GMG has to ceptable level of attendance without crowding. The prescrip-
be developed to describe situations traditionally consideretion to adapt the individual strategies is the following. If the
within the BAM, namely, cases in which the winning choice attendance turns out to beA<n, and the agent chooses to
is to meet the one taken by arbitrary fraction of the popu- g0 to the bar, she gairG points. Otherwise, she pays a fine
lation, not just the minority. There are no systematic studie®f 1 point. The valueG is left as a free parameter.
of this GMG. On the other hand a probabilistinixed strat- The balance of gains and losses keeps a record of suc-
egy) mean field approach of the BAM has to be developedcesses and failures of each agent. If the latter are more fre-
There are a number of possibilities for defining the mixedquent than the former, her account ends up by falling below
strategies for these two models. In the present paper we cofome fixed thresholtwhich we take to be )0 In this case her
sider for the GMG an obvious extension of the adaptive upaccount is reset to zero and her stratpgis updated. This is
dating dynamics that reproduces the well known self-done by changing the value @f to one chosen at random
organizing features of the MG. For the BAM we proposeWithin the interval @;— op,p;+ 6p). The width of this inter-
instead a mixed strategy that reproduces the results obtaina@l (we take dp=0.05) is left unchanged during the whole
with the usual treatments of this model that use iterated, purprocess. Reflective boundary conditions foy are used
strategies. It turns out that the two dynamics are different. Iwhenever necessary.
happens that the one associated with the BAM makes a bet- All N agents have initially O points and their initial atten-
ter use of the available information than in the GMG. Al- dance strategies are chosen with some criterion. In the
though in both frameworks—GMG and BAM—all agents present section we restrict ourselves to considering the case
have access to theameinformation, with the proposed in which all p’s are initially chosen at random from the in-
BAM rules they are able to keep better track of the causes foterval [0,1] with uniform probability.
winning or losing, thus making a more effective use of it The state of the many agent system is well described by
than in the GMG. These seemingly minor changes producthe density distributionP(p) which gives the fraction of
widely different cooperative behaviors. The GMG leads inagents that have a strategy within the inten@lp(+dp). In
general to quenched states that are far from equilibrium. Therder to calculate this we generate an ensembl¢ lostories
BAM evolution leads instead to an asymptotic configurationof the N-agent system by evolving it during a fixed number
that can be thought of as a thermodynamic equilibrium: itof iterations and starting from statistically equivalent initial
has lost memory of the initial conditions, the individual strat- conditions. The densit?(p) is obtained by normalizing the
egies continue to be updated at all times, and yet the densifyequency of occurrence of a given strategy in the whole set
distribution of attendance strategies remains stationary. lof the H histories. The number of iterations is fixed by
the following sections we discuss how both models yieldchecking that a stationary configuration has been reached.
similar results in a rather reduced portion of the space of We also compute other parameters that describe the state
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of the system. One is the attendarfod) averaged over the T T T T T
H histories as a function of the iteration numterin the
following we quoteM (t)=A(t)/N, to facilitate the compari-

. - : GMG (a) ]
son for different values ofl. A second important parameter 154 o BAM ]
is the fraction of agent€(t) that change their individual L T
strategies as a function of the iteration number. This fraction ] ]
provides a direct measure of the stability of the state that ha«z 10 1
been reached. We will usP., to refer to the asymptotic g | ]
distribution,t— oo, whenever the system reaches a stationary ]
state. 5 ]

A well known result obtained within the framework of the ] ]
pure MG is a strong polarization of the population. A distri-
bution PMC(p) is reached in which essentially half of the
agents always go to the bar while the other half never go. As 0.0 0.2 0.4 0.6 0.8 1.0
a consequencé/(t)—1/2 except for random fluctuations P
due to the updating of individual strategies that takes place a
all times[6,7].

The evolution of a system with the GMG rules and
#N/2 has been studied by Johnseinal.[11] and by ug8].

If the reduced acceptable level of attendancen/N is
close enough to 1/2 an equilibrium situation is reached that
resembles the MG resulfsee Fig. 1a)]. Equilibrium is
shown by the fact that! — u andC4(t) stabilizes at a con-
stant, nonzero value after a transient. In Figo) we show
typical plots of M(t) and Cg(t) for this situation. On the
contrary, ifu is larger than a critical valug, (see belowa
situation is reached in which no further updating of the strat-
egies takes placéquenchedconfiguration. In Fig. 2 we

show an example of the distributid?,(p) that is obtained - T f————1
by settingu> o >1/2. 0 200 400 600 800 1000 200000
The distributionP(p) that is obtained strongly differs steps

from PEMS(p). The fact thalC(t) tends exponentially to O

: o . . FIG. 1. GMG and BAM without quenching. In this casd,
[see Fig. 2)] indicates that a situation has been found that_ 1001, G=1, andu=600/1001. The data are averaged over 200

is completely different from thg one noted abO\_/e. This h"’}p'hi tories. In(a) we showP..(p) for both cases(b) illustrates the
pens because the largest fraction of the population has gaingd,« evolution of the reduced attendarldét) andC.(t), the frac-

many points and even though their accounts may flgctuatgon of moving agents. Notice th&((t) does not vanish.
they are not expected to fall below the threshold required to

update their individual strategies. The consequence of this ighe value ofp whenever possible. Once their individual strat-
thatM stabilizes at a value that may be far framyWhile the  egies are greater than 1/2 the inverse happens, agents seldom
situation foru~1/2 can be thought of as some kind of ther- lose points, and therefore are not forced to update their indi-
modynamic equilibrium, this case should instead be assocividual strategies. This also explains why the width of the
ated to a quenched configuration in which the state variablelsump neamp=1/2 turns out to be a function afp only.
are rapidly fixed at values that are close to the initial condi- The above arguments indicate that the shapé glfp)
tions. strongly depends upon the initial conditions. This is the rea-
We have performed extensive numerical simulations tason why we prefer to call this effect “quenching” rather
investigate this situation using values pfabove and below than “freezing.” The latter suggests a new ordering that
1/2 and several values @. As expected an overall symme- bears no relationship to the initial conditions, while the
try is found aroundu=1/2. This is because matching an former indicates that a dynamics has been imposed that sud-
attendance level greater than 1/2 is equivalent to matching denly reaches a fixed point, leaving the internal parameters
symmetricabsencelevel equally greater than 1/2. As will of the system at values that are close to the ones chosen with
shortly become evident the symmetry is not strict. We disthe initial conditions and that may be far from equilibrium.
cuss this point in Sec. V. In Fig. 3(@) we illustrate some cases in which quenching
Several features that are displayed in the quenched distriakes place. We plot the asymptotic value of the reduced
bution shown in Fig. 2 are worth noting. In the first place it attendanceM reached by the system as a function of
is found thatP,(p) =0 for 0<p<1/2 andu>1/2. This can displaying only the sector witjp>1/2, for several values of
easily be understood. Whein>1/2 the agents that haye G.
<1/2 lose more frequently than they win and therefore up- In Fig. 3(b) we also show a plot of the dispersion, of
date their attendance strategies more frequently, increasintge values ofM obtained in all theH histories of the en-
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FIG. 3. () Reduced attendance as a function w@f for N
U LA U A L. £ SN . =101. It can be seen that., is a function ofG. Size effects are
0 2000 4000 6000 8000 10000 1000000 shown in the inset(b) Transition from a nonquenchea4,# 1) to
steps a quenched statepfy=1).

FIG. 2. BAM and GMG with quenching, for the same values of . o .
N and G as in Fig. 1, butw=800/1001. In() we show that the (0 define it as the minimum value gf for which the dynam-

shape ofP(p) has little change for the BAM, while the GMG ICS leads the system to a situation in which the whole popu-
distribution is strongly modified. Correspondingly, ib) one can lation has accumulated a fixed gain, which Vegbitrarily)
see that the GMG does not reach equilibriul+£ ) because the chose to be not less than 20 points. In Fi¢b)3ve show
system stops evolvingds=0) very rapidly. Data for the GMG are ¢,,, the fraction of the population that has accumulated at
averaged over 3000 histories. On the brokexis we show thatthe |east 20 points, as a function @f. It is clear that if this
BAM does not quench even after lme steps. happens any further changes in the distributifp) or in
the attendance are extremely unlikely to occur. Another pos-

semble (o2, =3H[A.(h)—(A.)]¥NH). This parameter sibility is to choose the value of that corresponds to the
plays the role of a susceptibility. It displays a peak located atntersection of the lines that are associated with the two re-
the transition region and is essentially constant outside itgimes or the maximum oé, . Again, the differences be-
The finite width of the peak as well as the irregularitiedvbf ~ tween these definitions are to be attributed to the finiteness of
in the transition region are to be attributed to the finiteness othe systems that we have studied.
the system. The value ofu., depends upon bot@ andN. Changes in

It is possible to associate a critical valyg, with the G have not been explored previously and cause important
change between the two regimes. In the numerical experichanges in the region in which quenching occurs as well as
ments, the large fluctuations bf nearyu., are due to the fact in the shape of the distributioRS"(p). The effects of the
that some of the histories that make up the ensemble happealue ofG on u., can be seen in Fig.(8. The general phase
to quench while others, purely due to random fluctuationsgiagram(see Fig. 4 shows two regions that correspond to
instead reach equilibrium. Ag increases, the proportions of quenched and unquenched systems. The border between the
the two types of history gradually change leading to the situregions is given by the functiop.,(G). Finite-size effects
ation in which all possible evolutions lead to quenchedare also displayed in this figure through the valueg g{ G)
states. The peaked behavior @f; at u= u., supports the for two values ofN. The results displayed in Fig. 4 allows us
picture that a sort of critical phenomenon actually takes placéo conjecture that for an infinite system with=1 and
in the system for a precise value pqf =1/2 the usual settings of the minority game lead to an

There are several criteria to defipg, . We have chosen unstable quenched phase.
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L L S Ill. THE BAM
1079 ¢ —O0—N= 101 . _
\<E|>\ o N = 1001 _ Thg dynamics of the GMG does qot keep track of t_he.
0.9 i\j —A—N= 101 | situations that lead to successes or failures. However, this is
\O\E‘\D stressed in the BAM. It has been customary to accept that
\ \D\n QUENCHING agents derive utility in two situations: one when they decide
081 0\ \E‘\D\ i to go to the bar anél < x and also when they refrain from
= <>\ Ug going to the bar ant1 > .
0.7 o \ We propose for the BAM an adaptive dynamics that is
\ based upon the same information as in the GMG but uses it
069  NO QUENCHING D differently in order to keep track of the situations that lead to
\ gains or losses, i.e., by correlating them with the action of
0.5 +———1———1—— i going or not going to the bar. To this end we introduce

6o 02 04 06 08 10 12 14 “points” and “credits.” Points are gained or lost if the op-
G tion of attendingthe bar is correct or not. Credits are instead
FIG. 4. Phase diagram for the GMG in theG plane.A shows gained or lost depending whether the optiomof attending
an analytical solution for @-type initial condition, whiled and ¢ the bar is correct or not. We therefore carry a double ac-
correspond to numerical solutions starting from a uniform distribu-count. If an agent chooses to attefribt to attengl the bar
tion. The critical border for the BAM withs-type initial conditions andM<u (M>pu) she gains a poinfa credij. Otherwise,
would be a vertical line a&=1,22 forN=100. she loses a poiria credi}. When either the number of points
or the number of credits falls below some threshold, the cor-
responding account of points or credits is reset to zero and
the strategy is changed in the same fashion as already men-
tioned for the GMG.

The changes in the distributida®™€(p) that are due to
changes inu keepingG fixed are shown in Figs. 1, 2, and 5.

An increase inu produces an increasingly asymmetric dis- .
W p gy asy Note that the attendance strategy of an agent is changed

tribution. This hold up to the point at which> u.,i; and ) .
quenching occurs, giving rise to a humped distribution_by either of two reasons. Such an updating rule makes use of

PqGMG(p). The changes introduced by different valuesGof information that is lost with the scoring rules used for the

are shown in Fig. 5. The overall effect of this parameter is toGMG' Suppose, for instance, that an agent having initially

) o : all her accounts at zero chooses to go to the bar one day on
increase the polarization, preserving the level of asymmet%h. hM d ch h d h h
fixed by . Values ofG<<1 are reflected in distributions that Ich M<n and chooses not (o go the next day when the
are barely peaked at the corners. The polarization increas@d{endance turns out to be agavh< . Within the GMG

for G=1 and values ofs that are only slightly larger than 1 Tulés she ends up with zero points and her strategy is not
produce distribution®MC(p) that vanish for all values g~ UPdated. With the double account of the BAM she ends up
except in the close neighborhood B0 andp=1. Values instead with one positive point and one negative credit and is
of G that are even larger place the system into the quenchintjierefore forced to update her stratg@y]. , _
region of the phase diagram because every successful initial W& have performed numerical simulations using this dy-
move produces such a large gain that a revision of the strafl@mics with similar settings as those reported in the preced-
egy becomes extremely unlikely; therefore the evolution of"d Section. The results for the BAM are compared with

the system produces only mild changes in the initial distri-N0Se obtained with the GMG dynamics in Figs. 1 and 2.

bution. When quenching is absent in the GMG, the asymptotic dis-
tributions P2*M(p) can barely be distinguished from
. . . . . . PEMCS(p). For this case the values of the attendaAde)
404 and C(t) for the BAM are shown in Fig. (b). A strong
—_—Go06 difference occurs, however, whei> u., and the GMG gets
....... G=1.00 trapped in a quenched configuration. For the same settings
30+ — G=1.02 the BAM converges to equilibrium instead. The asymptotic
e G=115 distribution P2AM shows a strong polarization and the atten-

FIG. 5. Change oP(p) with G, for ©=0.6.

dance reaches the accepted level without difficulty. The na-
ture of the asymptotic state has no difference from that for
u<puer- This can be seen in Fig(1®.

A more profound difference between the two models
arises when the above analysis is repeatedsf@rl. While
the GMG dynamics can be checked to lead to quenched con-
figurations for essentially all values &, as shown in Fig. 4,
the BAM displays no quenching independently of the value
of G. Quenching can, however, occur in the BAM but for
different initial conditions from a uniform distribution. We
turn to this point in the next section.
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IV. ANALYTICAL DISCUSSION Moreover, from Eq. (1), (p)=3;n;p;/N and (p?)

In this section we discuss analytically the relevant fea—_E'n'p'/N’ thus in the limitD—¢> one gets

tures of the density distributioR(p) as well as the occur- C2=N2(u— 24N _/n2 4
rence of quenching within both the GMG and the BAM. (n=(p)) (P ={P)- @

In Eq. (4) {p) stands forf pP(p)dp. If P(p)=1/N, as for
A. The density distribution the initial conditions chosen in all the simulations in the

The shape of the distributioR(p) is the combined result prec;edlng sections, the dispersion turns out to %
of the actions of the whole ensemble of agents. Each player N (#~1/2)"+N/6. We thus see that such an initial con-
adjusts her attendance, attempting to minimize her individuafition is @ good guess for the traditional settings of the MG
loss. When equilibrium is reached the resultiRg(p) for ~ When u=1/2, but is indeed very poor for the GMG when
both GMG and BAM concentrates the population in the im-1 7 1/2. . ) .
mediate neighborhood gf=0 and p=1, plus an almost __ 'he equilibrium result{p)=y, that is always found is
vanishing contribution from intermediate values. The ratio ofS€€N 0 eliminate the(N°) terms in C*. This is also
the areas below the two peaks is, essentially, equal/ta ~ achieved with the gues®(p)=d(p—u). However, all
— 41). An intuitive guess foP(p) could well be instead a O(N) terms do not cancel becaus€=Nu(1-u). If the
sharply peaked function centered @ w. The difference two-peaked equilibrium distribution is roughly approxm_\ated
has to be sought in the properties of the distributi)  PY P(p)=(n1/N)25(p—p1)+(n2_/N.) 6(p—p,) one readily
that gives the probability of occurrence of a partyfotus- ~ S€€S that th®©(N°) terms are eliminated whemp, +nap;
tomers attending the bar. The distributi®(A) is of course  —#N- The O(N) terms also cancel if the two peaks qrg
completely determined bi(p). If P(p)=&(p— ) the cor- = 0; N1=N(1—pu) andp;=1, n;=Ng.
respondingP(A) turns out to be large for values @f that From this point of view, quenched states are far from
differ from the optimal one; the highly polarized equilibrium ©OPtimizing the average aggregate cd§tbec%use the corre-
distribution that is actually generated produces instead &PONdingPq(p) do not even cancel th®(N®) terms. The

P(A) that is much more concentrated nées N . relaxation dynamics that tends to minimize individual losses

Let us assume without loss of generality that all the agent! thus seen to also optimize a global paramegfér) (©nly if
distribute themselves intd different strategiesp; , i equilibrium is reachgd. che_ans? the relaxation stops when
=1,... D according to no agent loses. This situation, in general, does not corre-

o sponds to a minimal average cost.

D
n;
P(p)=2 [ o(p—Pi), ) B. BAM

In this section we discuss the occurrence of equilibrium
whereSPn;=N. With this assumption, the distributidA)  and quenching within the BAM. This can only be done with-
can be written as out any approximation if one assumes a distributi®{p)
=6(p—p,). This is seen to be appropriate except @N)

ny np D n . . . !
_ H) i1 = terms in the dispersion of party sizes.
P(A)_/Z‘O /EO H (/i)pi (1=pi) Given an acceptable level of attendanteif all agents
o have the same attendance stratpgy the probability of oc-
‘ currence of a party dess than ragents isS(N,n,p,) where
S /j) 2 party gents isS(N,n, po)
j n—-1 N—1
— i(1—p \N-1-i

The value A—Ngu)? measures the departure from the opti- S(N,n,po) = 240 ( i )po(l Po) : 6)

mal attendance, and therefofé=3,P(A)(A—Nu)? can

be taken to measure the square of the average cost incurrddiis is a continuous and monotonically decreasing function
by the ensemble of agents while adjusting their individualof p, and satisfies the following three conditions:
strategieg13].

Although Eq.(2) is in general difficult to evaluate,? can S(N,n,0)=1 Vn, (6)
be calculated without great difficulties. In fact if its definition
is used together with Eq2), the summation oveh can be S(N,n,1)=0 Vn, (7

performed first, taking advantage 6(A—EjD/j), and all
the summations over the; indices decouple from each
other. We get

S(N,n+m,p,)=S(N,n,p,) Vp,,m>0. (8)

If an agent decides to go to the bar, her account in points will
remain equilibrated when the expected reward equals the ex-

ny np D )
2= E E H {( n, ) pi/i(l_ pi)i i pected fine, i.e., when the_ a_ttendance stragggthat is com-
e B et Rl AP mon to all the agents satisfies:
D 2 1
X NM_; /J) . (3 S(N,n,pp)=m 9
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FIG. 6. The rootg, andp, of Egs.(9) and(10) are exemplified ) o - _
for N=20 andn=14. These values are chosen for the sake of FIG. 7. Quenching for the BAM fob-type initial conditions is

clarity of the figures. Notice that a§ increases,p, becomes possible forG>Gc, . The rootsp, andp, are plotted as functions
smaller andp,, becomes larger. of G and the indicated values @f. The two roots are equal fas

=G, . The value ofG,, is largely independent qf.

If an agent decides instead not to go to the bar a similar
condition can also be written for her account in credits. Thisquenching region, agents are forced to update their strategies
is either because they lose points or because they lose credits.
The average attendand will approach the valug.. Note
G that the average attendance and the average of individual
S(N,n+ 1,pc)=m- (100  strategies are completely equivalent, i.M=[pP(p)dp.
Therefore when the average attendance approaches the
quenching interval §.,p,) the evolution will progressively
come to a stop. For values & up toG~5G,;; the quench-
ing interval (p¢ ,pp) is always small {p,— pc|~0.1) and the
‘convergence to a quenched phase is in general very slow. As
the mean of the distribution approaches the quenching inter-
val, a smaller fraction of agents have to update their strate-
gies and therefore the fractioBg(t) tends slowly to zero,
very nearly approaching a power law, for a considerable
number ¢ 10°) of iterations. Sinc&2/M is almost indepen-
aﬂent of u this behavior does not change with its particular
value. In the cases in whigh, & (p¢,pp) the corresponding
Tasymmetrig  distributions Py M(p) associated with

For a s-type distribution of strategies the only chance toquenched configurations look similar to those associated

have a quenched phase using the BAM dynamics is to find g{ith equilibrium becausg they involve agents with all pos-
situation in whichp.<p, . For finiteN this can only happen sible attendance strategies.
if G>1 (see Fig. 6. From the above two equations it is easy

to see that the rogi, becomes smaller for increasing values C. GMG

H BAM
of G and the opposite happens fpj. A value G;" can A similar analysis as the one performed for the BAM can
eventually be found S‘/EMWh'Ch both roots satisly=p.  pe made for the GMG. If the system is prepared with a
=Pcrit- For anyG>Ggi the regions for winning points  gistribution Po(p) = 8(p—p,) the single account of points

and credits start to overlap and quenching occurs within @emains equilibrated provided that the probability of winning
narrow overlapping intervalp ,pp). In Fig. 7 we show the  p (N n,p) satisfies:

two rootsp, and p. as functions ofG. It further turns out

that for finite values oN the value ofGEAMis nearly inde-  Pw(N,N,py) =poS(N,N,po) +(1—po)[1—S(N,n+1,p,)]
pendent ofu.

GivenG, N, andn, the two equation§9) and(10) define the
two rootsp, and p. that are, respectively, the probabilities
with which all agents have to go if they hope to equilibrate
respectively, their accounts of points and credits.

Assume now thaG=1. Bearing in mind Eq(8) the two
roots satisfyp,<p.. If the agents choose to attend the bar
with a probability p,<p,, they gain points. On the other
hand, if they choose to attend with probabilipy>p. they
gain credits. However, due to the fact thgi<p. if they
gain points they lose credits and vice versa. In either case
agents will continue to update their strategies, quenching i
not possible, and equilibrium is eventually reached.

The evolution of ad-type distribution centered at a value = L (12)
of p, depends upon the choice Gfand . If G>GBM and 1+G

P, is inside the quenching intervap(,p,) the distribution

will not change and the attendan®ewill remain fixed atthe In Fig. 6 we show an example of the functions
value chosen for the initial conditions. This is so because al§(N,n,p), S(N,n+1,p) ,andP,,(N,n,p) for typical values
agents win both points and credits. pf, lies outside the of N andn, andn>N/2.
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The situation for the GMG is completely different from 1.0—7—+——————7F————7———7—
the BAM. The functionP,(N,n,p) has one maximum in the ] 450
interval O<p=<1, and to a high degree of accuracy displays 0.8
the symmetryP,,(N,n,p)=P,(N,N—n,1-p). The symme- e 140
try, however, is not strict. To see this note that # N going ]
to the bar is always a winning option no matter the option of 0.6
the rest of the agents. if=0, the action of not going is not ] 730
enough to win, because that depends upon the choice made, |, 1
0.4
by all the other agents. 1 120
A critical value GEM® and a critical probability of atten-
dancepS € can be defined for the GMG as tpevalue that 0.2 110
corresponds to the maximum &, (N,n,p) given by Eqg.
(1) through 0.0 1o
Pu(Poit©) = Py®*=max,P,(N,n,p), (12 0.0 0.2 0.4 0.6 0.8 1.0
p
GgMGZL_l_ (13 FIG. 8. DistributionsP(p) for the GMG (right axig, obtained
Py from three initial conditions(p—p,). We also showP,, (left axis)

to help to understand the evolution of the systems. The rpots
For given values ofh and N quenching is produced ip and p- correspond to the two root®,=1/2. In this caseu
=p., and G=G,,. The values ofG,, for the GMG are = 75/101.
completely different from those of the BAM. While in the
latter there exists a common value @f, independent ofu  If this result remains valid for a uniform initial distribution,

this is not the case for the GMGee Fig. 4. the usual settings for the MG3=1 andu = 1/2) correspond
Above G, and with the initial conditionPy(p)=4J(p  to a critically quenched system.
—p,), the quenching condition is satisfied for apy in the In Fig. 9@ are shownGSM%(u=1/2) and GEAM(u

interval p.<p<p.-, wherep andp.. are the two roots of =1/2) as a function of N. It is seen thaGSMC=GBAM as
Eq. (11). Any system prepared witp; within that region N, The corresponding values far+1/2 can be related
will rapidly be quenched. Assume for the sake of concreteyg those shown in Fig. @). In the first place one should

PeSS t':haf; We<Ch°°Sﬂ>(;5' Thle Stft"},m tevolvesthquiti dlif' notice that the value o624 is independent ofs. On the
erently if p,<p- or p,>p- . In the first case the whole GMG

population of agents is forced to update their strategies tgther hand, the curves @, G((;g& 1/2) can be regb,%ed to
change the individuap’s in order to surpass the valye.. (e one shown throughGgpi;~(u) = (au+b)Geri (1
Once this happens, updating progressively comes to a stop as./2) t0 @ very good degree of approximatipa and b

the average attendance gets into the intergal p-) and  ~ constants, up to term9(1/N)]. .

the system gets quenched with a valueMibelow the ac- Coggﬁrnmg tré(iﬂgalues ®crie One can checkFig. Ab)]
cepted fractionu. SinceP,(N,n,p) is such thap- is very ~ thatPer- and pgy~ approach each other and tend to the
nearly similar tou, for p;>p- the initial condition of a common limiting valuep.;= u, as expected from a naive
S-type distribution changes BE¢(p) with a mean value €stimate of the probability of attendance. One can also con-
that is very close tqu; this cannot be distinguished from an jecture thatGe/ () =1.
equilibrium distribution. In addition, updating of strategies
continues to take place continuously. Examples are shown in

Fig. 8 V. ANNEALING
The situations described hitherto indicate that outside a
D. Finite-size effects very restric_ted region of and for.different initial condition;
. o the dynamics of the GMG rapidly approaches quenching.
An estimate of the finite-size effects of the models on ther,o many agent system stops evolving, the attendance re-
values ofG., andp,, can easily be made for the usual set- 4ins fixed at a value that is far from the tolerated fraction
tings of the MG, by assuming a-type distribution as an , "anq a|l the other internal parameters remain close to the
initial condition. Foru=1/2 and from Eqs(11) and(13) it jpitial conditions. In contrast, the BAM always approaches a
follows immediately thatpc.i=1/2VN and the value of  yigyiption PBAM(p) that corresponds to what one expects

GMG B : MG
Genit - can directly be estimated from the valueRE"(p thermodynamic equilibrium: the attendance fluctuates

=1/2) using Eq(11) and standard asymptotic expansions. Itaroung the expected fractio, agents continue to update
turns out that their individual strategies, and2*"(p) remains stationary.

= There is a way to regain equilibrium within the frame-
GMsz_ (14)  Wwork of the GMG through an iterative procedure that can be
“ J[2aN]-2 regarded as an annealing protocol. The key point is to realize
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FIG. 9. (@) Gg,i; vs 1N up toN=1000. Equatior(14) provides ' T ' T T T
an excellent fit that cannot be distinguished from numerical data for 1.04 ® 7
the GMG,G=1,.=0.5; (b) p., as a function of I for the same 1 ..
values ofu. 0.8+ e 7
|7 (c)
o _ 0.69 M .
that quenching is produced by the memory stored in the ] G=1.1

points gained by the agents. In fact the quenched state re- .44 . i
mains unchanged because on the average agents continue tc ]
gain points. To correct the quenched phase, a procedure can g.2- fq 4
be implemented that consists in periodically obliterating the ]

memory of the system. This is done by removing all the 0.04f - e _
points gained by all the agents in each iteration. In each . . : . . .
annealing episode the system is allowed to evolve freely dur- 0 20 40 60 80 100
ing a maximum ofng steps; at the end, several parameters annealing step

are calculated: the fractiops of agents that have gained not

less that 5 points, the relative attendamdgethe fraction of FIG. 10. Annealing in the GMG.

histories f;, where the system does not reach a quenched
configuration in the allowed steps, and the fractiof,
=Nq/Ns, wheren, is the actual number of evolution steps transition takes place that can be interpreted as a gradual

that are needed to quench the system. melting of the system: the fractiops drops whilef, andf,

The results obtained are shown in Fig. 10 for two values . ) : .
of G and .= 850/1001. At the end of the first episode the grow abruptly, almost reaching their maximum possible val-

distributionP,, [Fig. 10@)] that is found is entirely similar to 4% ForG=1.1{[Fig.100c)] this transition is not present as
the humped distribution shown in Fig. 2, agd=1, thus can be seen f_rom the fact that is constantly equal to 1_,
corresponding to a quenched phase. As agents are repeatedf})il® fn=0. Itis most remarkable, however, that the relative
deprived of points some of them are increasingly forced tgiftendance still reaches the valug, as forG=1. In other
update their strategies. F&=1 [Fig. 10b)] and during the words, the annealing protocol is seen to be able to drive the
first 30 annealing episodes very few steps are required ifystem towardvl = with or without a change of the phase
order to haveps=1; after ~35 annealing episodes a clear Of the system.
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VI. CONCLUSIONS quenched state is far from being unique; the “glassy” struc-

In the present work we have discussed the self-ture of the quenched phase lacks any preferred internal or-

o . . dering. This should be regarded as the signature of the ab-
organization properties of two multiagent models, the BAM ence of interactions amona the agents and has to be
and the GMG. We have shown the relevance of two control 9 9

arameters. One is the fraction of the population of a0gnts attributed purely to dynamic effects. While equilibrium is
P ' o bop 9RNIS o ssociated with the optimization of the global magnitude,
that has to combine in order to make the correct decisio

: : i Yhis is no longer true for a quenched configuration.
The other isG which represents the gain produced by a cor- Reaching a quenched phase is a direct consequence of the

rect decision, measured in units of the fine paid for mak'n%volution dynamics contained in the rules for updating the
the wrong one. For the sake of concreteness we have bopqiyidual strategies. This effect is evident when the GMG is
rowed the framework of the BAM in which the decision that compared to the dynamics arising from the BAM with mixed
has to be made is to go or not go to a bar. The decision is th@trategies, as we have presented here. In contrast to the
correct one if the fraction of the population that has decidedsMG, when starting from a uniform distribution the BAM
to go does not exceed. always reaches a state of equilibrium, independently of the

The system under consideration lacks any interaction oyalues ofux andG. The two models differ in the use of the
internal correlation among the agents. Each agent feels thgvailable information. While the GMG dynamics only keeps
presence of the rest only through the value of an aggregat record of good and wrong decisions, the seemingly minor
parameter that is the total attendance, and rewards or penahodifications implied in the BAM rules allow it to keep
ties of individual actions are decided with respect to its partrack also of theeasondor such successes and failures. The
ticular value at each moment. Otherwise, agents act indepesystem thus keeps a better “memory” of the previous steps
dently from each other. With these rules, the many agenin the dynamics. The consequence of this is that the system
system adapts and always reaches stable asymptotic configalways self-organizes in such a way that— u.
rations. These are, however, of quite different nature depend- The many agent system that has been presented here has
ing upon the values of the control parameters and of thaeveral features that are reminiscent of the physics of many
initial conditions, and on the information that is used tobody systems. In the first place one should note that a
guide the individual actions. guenched phase can be induced for critical valueg aind

The usual framework of the minority game, if generalizedG. A sort of order parameter can be established with the
to take into account arbitrary values pof gives rise either to relative attendanc# (t). Two regions can be individualized
states of equilibrium or to quenched configurations. Then parameter space, one in whith(t)— x and the other in
former have a density distribution of individual strategieswhich M(t)— M. # u. For critical values ofu and G, the
that depends only upon the values®fand x and remains system undergoes an internal transformation reflected by a
stationary while a fraction of the populati@y continuously  peak in the dispersiowr, that recalls the behavior of the
updates their strategies. Quenched states have instead fegtsceptibility at a second order phase transition.
quency distributions that may be very different depending Although the model does not contain any two-body inter-
upon the initial conditions, whil€ drops exponentially to action, within this analogy “particles” accommodate them-
zero in all cases. selves following an occupational constraifihe maximum

A phase diagram for the GMG can be established in thellowed attendangevery much in the same fashion as in a
n-G plane. Quenching occurs outside a region limited by amany fermion system. To support this viewpoint, one could
critical line u.(G). This borderline has been obtained nu- note that very few “particles” participate in the dynamics.
merically for uniform initial conditions. If &-type distribu- The paramete. fixes the total attendance and therefore
tion is assumed analytical expressions can be obtained. Iplays the role of the chemical potential through an effective
both cases finite-size effects are found. A rigorous estimateollective interaction. From this point of view individual
can be made for an infinite system in the second case. It igains should be related tthe negative ofa kind of single
found that ifN—< the point G=1,.=1/2) belongs to the particle energy: those agents that have accumulated large
critical line. A numerical estimate of finite-size effects for a gains are less likely to participate in the dynamics.
uniform initial distribution is also in agreement with this A resemblance can also be established between quenching
result. It is interesting to note that these are the usual settinga the GMG and similar situations found in many body sys-
for the minority game widely used in the literature. tems. In fact we have described a gradual modification of the

The shape of the distributioR(p) is the combined result quenched configuration through a procedure that is entirely
of the actions of many “independent” agents. In spite of similar to an annealing protocol. It turns out that a quenched
such independence we have proved that the equilibrium disstate can gradually be “melted” into a state of equilibrium if
tribution optimizes the statistical occurrence of the most conall the points that have been gained by the agents are peri-
venient coordinated state or, equivalently, minimizes the avedically eliminated. The points accumulated by the agents
erage aggregate cost of the ensemble of agents. keep memory of the previous results and each resetting can

A quenched state is reached when the individual updatingpe thought of as an exchange of “energy” with a thermal
of strategies stops. This should not be considered to corrdsath in order to reach equilibrium.
spond to a “frozen” configuration, however. If this were the ~ The concept of temperature has been introduced in the
case, an internal ordered state would be found bearing nblG in several contexts. In all cases it causes random fluc-
relationship to the initial conditions. Contrary to this, the tuations. In this work we have not attempted to introduce the
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temperature. It is worthwhile to mention, however, that inacceptable attendance. It is interesting to note that this solu-
fact there is an individual source of fluctuations present, astion is in general far from equilibrium and hence is neither
sociated with the update @ described in Sec. Il. We recall stationary nor optimal.

that every time a new value qf; has to be chosen, it is The minority game, regarded as a simplified version of
randomly selected from an interval of widfp around it. the BAM, has also been repeatedly presented as a schematic
Hence, this fluctuation acts as a source of fixed temperaturé&amework with similar interest for economics. However, the
T, say, and can be recognized as the final reason that egccurrence of quenched asymptotic configurations in a
plains why the distribution functiof®(p) does not simply straightforward generalization of the MG puts some limita-
converge to the sum of severéls. Hence, our work can be tions on the applicability of the model to stylized economic
considered to describe the relaxation to equilibrium at thasituations. Quenched configurations are trivial examples of
fixed temperaturd =0, except when the annealing protocol equilibria because the adaptation dynamic has stopped, but
is applied. This framework could be extended to a situatiorthey are neither Nash equilibria nor Pareto optimal. In fact, if
at T#0 by introducing fluctuations, allowing, for instance, M # x many individual situations can be improved without

individual agents to change their assistance strategies probarming the situation of any other agent. It is interesting to
bilistically. note that such configurations are produced by the limited use

The BAM has been worked out to show how internal that agents make of the available information. The GMG can
coordination of markets or economic systems can derivéherefore safely be used if quenching is avoided or special
from uncoordinated individual actions that are inspired by ssituations are considered in which this is not particularly
common belief. It is a clear example in which an ensemblgelevant. Otherwise, one should bear in mind that to simulate
of agents with limited information about somebody else’smarket environments it is mandatory to assume that the
decisions can nevertheless give rise to a self-organized padgents must make full use of all the available information.
tern within a scheme referred to as “bounded rationality.”
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